首页> 外文OA文献 >Hierarchical Fog-Cloud Computing for IoT Systems: A Computation Offloading Game
【2h】

Hierarchical Fog-Cloud Computing for IoT Systems: A Computation Offloading Game

机译:物联网系统的分层雾云计算:计算   卸载游戏

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fog computing, which provides low-latency computing services at the networkedge, is an enabler for the emerging Internet of Things (IoT) systems. In thispaper, we study the allocation of fog computing resources to the IoT users in ahierarchical computing paradigm including fog and remote cloud computingservices. We formulate a computation offloading game to model the competitionbetween IoT users and allocate the limited processing power of fog nodesefficiently. Each user aims to maximize its own quality of experience (QoE),which reflects its satisfaction of using computing services in terms of thereduction in computation energy and delay. Utilizing a potential game approach,we prove the existence of a pure Nash equilibrium and provide an upper boundfor the price of anarchy. Since the time complexity to reach the equilibriumincreases exponentially in the number of users, we further propose anear-optimal resource allocation mechanism and prove that in a system with $N$IoT users, it can achieve an $\epsilon$-Nash equilibrium in $O(N/\epsilon)$time. Through numerical studies, we evaluate the users' QoE as well as theequilibrium efficiency. Our results reveal that by utilizing the proposedmechanism, more users benefit from computing services in comparison to anexisting offloading mechanism. We further show that our proposed mechanismsignificantly reduces the computation delay and enables low-latency fogcomputing services for delay-sensitive IoT applications.
机译:在网络边缘提供低延迟计算服务的雾计算是新兴的物联网(IoT)系统的促成因素。在本文中,我们研究了雾计算资源在包括雾和远程云计算服务在内的分层计算范式中向物联网用户的分配。我们制定了一个计算卸载游戏来模拟物联网用户之间的竞争,并有效分配雾节点的有限处理能力。每个用户都旨在最大程度地提高自己的体验质量(QoE),这从减少计算能力和延迟方面反映了其对使用计算服务的满意度。利用一种潜在的博弈方法,我们证明了纯纳什均衡的存在,并为无政府状态的价格提供了上限。由于达到均衡所需的时间复杂度随用户数量呈指数增长,因此我们进一步提出了一种前期最优的资源分配机制,并证明在具有$ N $ IoT用户的系统中,它可以实现$ \ epsilon $ -Nash均衡。 O(N / \ epsilon)$时间。通过数值研究,我们评估了用户的QoE以及均衡效率。我们的结果表明,与现有的卸载机制相比,通过利用所提出的机制,更多的用户将从计算服务中受益。我们进一步表明,我们提出的机制显着减少了计算延迟,并为延迟敏感的物联网应用启用了低延迟雾计算服务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号